Degenerate Sklyanin Algebras and Generalized Twisted Homogeneous Coordinate Rings
نویسنده
چکیده
In this work, we introduce the point parameter ring B, a generalized twisted homogeneous coordinate ring associated to a degenerate version of the three-dimensional Sklyanin algebra. The surprising geometry of these algebras yields an analogue to a result of Artin-Tatevan den Bergh, namely that B is generated in degree one and thus is a factor of the corresponding degenerate Sklyanin algebra.
منابع مشابه
Proposed Research
I was a graduate student at the Mas-sachusetts Institute of Technology. The rst three years of these studies were supported by an NSF Graduate Student Fellowship. My research there led to a Ph.D. thesis entitled \Noncommutative ruled surfaces." My thesis research describes certain classes of graded rings which arise as homogeneous coordinate rings of noncommutative quantizations of algebraicall...
متن کاملNoncommutative Ampleness for Multiple Divisors
The twisted homogeneous coordinate ring is one of the basic constructions of the noncommutative projective geometry of Artin, Van den Bergh, and others. Chan generalized this construction to the multi-homogeneous case, using a concept of right ampleness for a finite collection of invertible sheaves and automorphisms of a projective scheme. From this he derives that certain multi-homogeneous rin...
متن کاملThe Dixmier-moeglin Equivalence for Twisted Homogeneous Coordinate Rings
Given a projective scheme X over a field k, an automorphism σ : X → X, and a σ-ample invertible sheaf L, one may form the twisted homogeneous coordinate ring B = B(X,L, σ), one of the most fundamental constructions in noncommutative projective algebraic geometry. We study the primitive spectrum of B, as well as that of other closely related algebras such as skew and skew-Laurent extensions of c...
متن کاملLinear Equations over Noncommutative Graded Rings
We call a graded connected algebra R effectively coherent, if for every linear equation over R with homogeneous coefficients of degrees at most d, the degrees of generators of its module of solutions are bounded by some function D(d). For commutative polynomial rings, this property has been established by Hermann in 1926. We establish the same property for several classes of noncommutative alge...
متن کاملDegenerate Sklyanin Algebras
New trigonometric and rational solutions of the quantum Yang-Baxter equation (QYBE) are obtained by applying some singular gauge transformations to the known Belavin-Drinfeld elliptic R-matrix for sl(2,C). These solutions are shown to be related to the standard ones by the quasi-Hopf twist. We demonstrate that the quantum algebras arising from these new R-matrices can be obtained as special lim...
متن کامل